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What is deep learning

Deep learning is constructing 

networks of parameterized

functional modules & training

them from examples using

gradient-based optimization

Hero of deep learning: Yann LeCun
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DNN serve as the variational function
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Training process

1. Initially 𝜃 are random numbers and 

network makes random predictions 

2. Using network prediction to compute 

loss 𝐿, which is a functional of 𝑓(𝑥, 𝜃)

3. The gradients 𝜕𝐿/𝜕𝜃 are computed 

through auto-differentiation

4. Trainable parameters 𝜃 are updated 

using stochastic gradient descent 

(SGD) 
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Learn Hierarchical representations

Shallow layers Deep layers
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Mapping data between two sources

Image to text

If

1. Causality link exists 

2. The used DNN has 

enough representation 

power

3. Enough training 

examples
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Mapping data between two sources

DALL·E 2 can create original, realistic images and art from a text 

description. It can combine concepts, attributes, and styles.

Text to image
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Mapping data between two sources

DALL·E 2 can create original, realistic images and art from a text 

description. It can combine concepts, attributes, and styles.

Text to image
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Inverse problem in HIC 

Final state hadrons

(1) Nuclear structure (2) Initial parton distribution (3) QGP properties/nuclear phase transition

Non-linear mapping
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Classifying QCD EoS

𝛁𝝁𝑻
𝝁𝝂 = 𝟎
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Traditional observables （EBE）
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Deep learning for nuclear phase transition

Nature Communications 2018, LG. Pang, K.Zhou, N.Su, H.Petersen, H. Stoecker, XN. Wang. 13



Increasing list of ML for QCD EoS
• An equation-of-state-meter of quantum chromodynamics transition from deep learning, Long-Gang Pang, Kai Zhou, Nan Su, Hannah

Petersen, Horst Stöcker, Xin-Nian Wang

• Identifying the nature of the QCD transition in relativistic collision of heavy nuclei with deep learning, Yi-Lun Du, Kai Zhou, Jan
Steinheimer, Long-Gang Pang, Anton Motornenko, Hong-Shi Zong, Xin-Nian Wang, Horst Stöcker

• A machine learning study to identify spinodal clumping in high energy nuclear collisions, Jan Steinheimer, LongGang Pang, Kai Zhou,
Volker Koch, Jørgen Randrup, Horst Stoecker

• An equation-of-state-meter for CBM using PointNet, Manjunath Omana Kuttan, Kai Zhou, Jan Steinheimer, Andreas Redelbach, Horst
Stoecker

• Classification of Equation of State in Relativistic Heavy-Ion Collisions Using Deep Learning, Yu. Kvasiuk, E. Zabrodin, L. Bravina, I. Didur,
M. Frolov

• Neural network reconstruction of the dense matter equation of state from neutron star observables. Shriya Soma, Lingxiao Wang, Shuzhe
Shi, Horst Stöcker, Kai Zhou

• Learning Langevin dynamics with QCD phase transition, Lingxiao Wang, Lijia Jiang, Kai Zhou

• Machine learning phase transitions of the three-dimensional Ising universality class, Xiaobing Li, Ranran Guo, Kangning Liu, Jia Zhao,
Fen Long, Yu Zhou, Zhiming Li

• Extensive Studies of the Neutron Star Equation of State from the Deep Learning Inference with the Observational Data Augmentation,
Yuki Fujimoto, Kenji Fukushima, Koichi Murase

• Nuclear liquid-gas phase transition with machine learning, Rui Wang, Yu-Gang Ma, R. Wada, Lie-Wen Chen, Wan-Bing He, Huan-Ling Liu,
Kai-Jia Sun

• Machine learning spectral functions in lattice QCD, S.-Y. Chen, H.-T. Ding, F.-Y. Liu, G. Papp, C.-B. Yang

• Probing criticality with deep learning in relativistic heavy-ion collisions, Yige Huang, Long-Gang Pang, Xiaofeng Luo, Xin-Nian Wang

• Mapping out the thermodynamic stability of a QCD equation of state with a critical point using active learning, D. Mroczek, M. Hjorth-
Jensen, J. Noronha-Hostler, P. Parotto, C. Ratti, and R. Vilalta 14



Data representation
• Images: histograms 

• (px, py) or (pt, phi) 

• (px, py, pz)

• (pt, phi, eta)

• Point cloud: particle list

E Px Py Pz pid

6.84 1.07 4.5 6.83 211

68.92 0.75 0.64 68.91 2212

40.4 0.06 0.54 40 321

…
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Point cloud network for HIC

JHEP 12 (2019) 122, J. Steinheimer, L.G. Pang, K. Zhou, V. Koch and Jørgen Randrup 16



CNN for symmetry energy

Phys.Lett.B 822 (2021) 136669, Y.J Wang, F.P. Li, Q.F. Li, H.L. L ü, and K. Zhou 

Skyrme potential + IMQMD off-diagonal = misclassified
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Critical behavior

Self Similarity Self Similarity in momentum space

PLB 801(2020) 135186, J. Wu, Y.F. Wu, Z.M. Li 18



Looking for critical end point
Tagging

C
lassificatio

n

Two tasks:

1. Tagging: label each particle

2. Classification: label each event

Technique:

Point cloud network, 

Dynamical edge convolution 

neural network

PLB 827(2022) 137001, Y.-G. Huang, L.-G. Pang,  X.F. Luo and X.-N. Wang 19



Active learning to rule out unphysical EoS

4 parameters from 3D Ising model QCD EoS Lables for classification

Acceptable = Stable + Causal

2203.13876, D. Mroczek, M. Hjorth-Jensen, J. Noronha-Hostler, P. Parotto, C. Ratti, and R. Vilalta 20



Active learning to rule out unphysical EoS

2203.13876, D. Mroczek, M. Hjorth-Jensen, J. Noronha-Hostler, P. Parotto, C. Ratti, and R. Vilalta 21



In medium heavy quark potential 

S.Z. Shi, K. Zhou, J.X. Zhao, S. Mukherjee, and P.F. Zhuang Phys. Rev. D 105, 014017 22



Detecting CME via deep learning

2105.13761, Y.-S. Zhao, L. Wang, K. Zhou, and X.-G. Huang (2021)

Gradient ascent to get the most responsive CME-

spectra that demonstrates what has been

learned by the machine.
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Determining nuclear deformation

arXiv:1906.06429, L.-G. Pang, K. Zhou and X.-N. Wang

𝜷𝟐

𝜷𝟒

Data: Trento + Matching
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Identifying the 𝛼-clustering structure

Junjie He, Wan-Bing He, Yu-Gang Ma, Song ZhangPhys. Rev. C 104, 044902 (2021)

𝛼 clusters Fail in EbE Succeed with 4000-events average
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Stacked U-net for relativistic hydrodynamics
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arXiv: 1801.03334; NPA2018, H.Huang, B.Xiao, H.Xiong, Z.Wu, Y. Mu and H.Song



Increasing list of DL for jets in HIC

• Probing heavy ion collisions using quark and gluon jet substructure, Yang-Ting Chien, Raghav Kunnawalkam Elayavalli

• Data-driven extraction of the substructure of quark and gluon jets in proton-proton and heavy-ion collisions, Yueyang

Ying, Jasmine Brewer, Yi Chen, Yen-Jie Lee

• Data-driven quark and gluon jet modification in heavy-ion collisions, Jasmine Brewer, Jesse Thaler and Andrew P. 

Turner

• Classification of quark and gluon jets in hot QCD medium with deep learning, Yi-Lun Du, Daniel Pablos, Konrad 

Tywoniuk

• Deep learning jet modifications in heavy-ion collisions, Yi-Lun Du, Daniel Pablos, Konrad Tywoniuk

• Jet Tomography in Heavy-Ion Collisions with Deep Learning, Yi-Lun Du, Daniel Pablos, Konrad Tywoniuk

• The information content of jet quenching and machine learning assisted observable design, Yue Shi Lai, James 

Mulligan, Mateusz Płoskoń, Felix Ringer 

• Deep Learning for the classification of quenched jets, Liliana Apolinário, Nuno F. Castro, M. Crispim Romão, Jose 

Guilherme Milhano, Rute Pedro 

• Deep learning assisted jet tomography for the study of Mach cones in QGP, Zhong Yang, Yayun He, Wei Chen , Wei-

Yao Ke, Long-Gang Pang and Xin-Nian Wang

• ...
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DL assisted jet tomography for Mach Cones

1. Jets start from different 

positions are distorted 

differently due to 

different path length, 

temperature gradient 

and radial flow. 

2. Locating jets will help 

differential studies on 

Mach cones and jet 

energy loss.

arXiv:2206.02393v1 , Z. Yang, Y.-Y. He, W. Chen , W.-Y. Ke, L.-G. Pang and X.-N. Wang 28



DL assisted jet tomography for Mach Cones

RMS Error ≈ 𝟐. 𝟒 fmInput 1

Input 2

Latent features
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DL assisted jet tomography for Mach Cones

Network prediction

True positions

Azimuthal angular distributions of jet 

hadrons with pt>2 GeV  are shown for 

events selected by deep-learning 

assisted jet-tomography, which shows

1. Path length dependence

2. Effect of temperature gradient 

3. Effect of radial flow
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Deep learning assisted jet tomography
Not selected DL assisted selection

3D structure of Mach cones using DL assisted jet tomography 31



Summary

• DL can build the non-linear map between two groups of data as long as 

there is causality link between them

• DL is widely used in the inverse problem of HIC to extract 
1. the initial nuclear structure 

2. the QCD equation of state

3. the in-medium heavy quark potential

4. the jet modification in QGP

5. …

• Deep learning assisted jet tomography helps to locate jet production 

positions for differential studies of Mach cones
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